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Optimality of classical difference estimators of finite
population variance under random non-response with
comparative study

Mahamood Usman’

Abstract

In this study, we address the challenge of calculating the finite population variance when
faced with random non-response. Such issues are commonly encountered in various fields
like medical sciences, environmental sciences and business studies when dealing with data.
Using the ranking of an auxiliary variable across three different methodologies of random
non-response, we developed several novel difference-type estimators of population variance
along with their optimal models. The strategies are shaped by using the varying levels of
information available regarding the auxiliary variable. We have studied the properties of
the proposed estimators under large sample approximations and determined their optimum
situations in each strategy. The introduced estimators can be viewed as an advancement
of traditional difference estimators. Within the associated methodologies, we conducted a
comparative analysis based on some real datasets as well as simulated datasets, whereby
the proposed estimators showed reduced variances when assessed in terms of the enhanced
percentage relative efficiencies (PRE) compared to some standard ratio and difference-type
estimators relevant to the respective methodologies.

Key words: study variable, population variance, dual use of auxiliary variable, percentage
relative efficiency, random non-response.

AMS Subject Classification: 62D05.

1. Introduction

The measurement of variation provides a dynamic idea about the data. For example,
a company sales representative may analyze the variations in sales records or the population
of customers monthly to help them decide how to improve sales or customer satisfaction.
Similarly, a marketing analyst of a company may be interested in analyzing the variability
of company sales in a particular area over time to see which products the customers like
most. To measure the variation of such kind of data, the survey practitioners often use the
term variance. Variance measures the variability of data and is extensively used by analysts
in various fields such as agriculture, forestry, medical science, politics, finance, population
traits, etc. It plays an important role in the testing of hypotheses and the construction of
confidence intervals for population parameters. The attention to the variance estimation
techniques has been paid by researchers since long ago. Singh et al. (1973) have proposed
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the estimator of population variance using the priori information about the population co-
efficient of kurtosis and compared it with the usual unbiased estimator. Das and Tripathi
(1978) have introduced the estimator using the information on an auxiliary variable. Later
on, ratio and regression-type estimators using the information on auxiliary variables have
been discussed by various authors such as Isaki (1983), Singh et al. (1988), Upadhyay and
Singh (2001), Yasmeen et al. (2019), Zaman and Bulut (2022), among many others. Belili
et al. (2023) and Khodija et al. (2023) have presented some improved probability distri-
butions and studied their mathematical properties. They have examined the efficiencies of
the estimators through comparative studies. Ahmad et al. (2023), Zaman and Bulut (2024)
and Daraz et al. (2025) have proposed some ratio and difference-type estimators of popu-
lation mean and variance and investigated their optimal behaviors using real and simulated
datasets. The above authors have studied the estimation procedures of population parame-
ters in the presence of complete response.

When the non-response is observed in the sample, the problem of estimation of population
variance has also been discussed by various authors in the context of random non-response,
introduced by Rubin (1976). The authors, notably Singh and Joarder (1998), Kumar (2014),
Sharma and Singh (2020), and Bhusan and Pandey (2021) have suggested improved esti-
mators of finite population variance in the presence of random non-response using the in-
formation on single and multi-auxiliary variables. It is a well-known fact that the efficiency
of the estimators may be increased by using the multiple auxiliary variables. When the
information on multi-auxiliary variables is not available, the researchers like Yaqub et al.
(2017), Hussain and Haq (2019), Irfan et al. (2020) and many others have published the
higher efficient estimators just by recalling the dual or rank of an auxiliary variable. Singh
and Usman (2022) have established improved estimators of population variance using the
rank of an auxiliary variable in a customary way in the case of random non-response. Re-
cently, the authors like Javed et al. (2023), Almulhim et al. (2024), Bhusan and Pandey
(2025), etc., have suggested improved and optimal estimation procedures for estimation of
population parameters in the related areas.

Inspired by the aforementioned researchers, the motivation of the present work can be stated
as follows:

» Enhancing the efficiency of the classical difference estimator of population variance
to the next level.

* Efficient utilization of the rank of an auxiliary variable in the construction of a new
model.

* Investigation of the behavior of the new model in three distinct strategies of random
non-response.

» Comparison of the new model with existing ones based on numerical and simulation
studies.

In this study, we have developed some new models along with their optimal versions
for the estimation of finite population variance under the missing at random (MAR) non-
response mechanism. We have efficiently employed the rank of an auxiliary variable in the
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construction of new estimators in three distinct strategies of random non-response. The nov-
elty of the present work may be stated as the extension of classical difference estimator by
utilizing the rank of an auxiliary variable in order to achieve an enhanced level of efficiency.
The role of the rank (dual) of an auxiliary variable in the formulation of newly suggested
estimators may be easily recognized in terms of higher percentage relative efficiencies com-
pared to existing estimators considered in this study.

The rest part of the paper is constituted as follows. In Section 2, the methodology and
notations are presented and some customary estimators have been discussed in Section 3.
The proposed estimators have been formulated in Section 4, and their optimal situations
have been stated in Section 5. In Section 6, the properties of proposed estimators have been
compared with some relevant existing estimators under a comparative study based on real
and simulated datasets. Finally, the conclusions have been made in Section 7.

2. Methodology and Notations

Consider a finite population Q = {Q},Q,,...,Qn} of size N in which the study vari-
able y and auxiliary variable x are properly correlated with an amount of correlation py,.
Suppose that Z, = {zx,,2x,,-..,Zxy } denote the ranks of corresponding values of variable
X = {x1,x2,...,xy} on which the information is already available in Q. Draw a sample of
size n from Q using the simple random sampling without replacement (SRSWOR) tech-
nique where the information cannot be received on m{m = 0,1,2,...,(n —2)} units due to
random non-response (MAR) for target variable y only. As a result, the (n-m) respond-
ing units that remain are treated as the sample based on the technique of simple random
sampling. We assume that the information is missing for auxiliary variable x on corre-
sponding units of y, as per the situations discussed in the present study. If the probability of
non-response among the (n — 2) possible values of m non-responses is denoted by p, then
m follows the distribution given by

n—m (n—2
P(m) = gt m=0,1,2,...,(n—2 1
= aan () (n=2) M)
where p + g = 1 (instantly see Singh et al., 2000). Here, p can be estimated using the
maximum likelihood estimation method based on the distribution given in (2.1).

Singh and Joarder (1998) have obtained the maximum likelihood estimator of p as

(n—l—i—m)—\/(n_l_,_m)z_%
2(n—3)

ﬁ:

A

and therefore § =1 — p.

Now, we define the following notations:
Y= ):ﬁvzl yi/N: ) Mean of y for entire population
§2=YY (yi—¥)*/(N—1): Variance of y for entire population.
X =Y!"x;/(n—m): Respondent mean of x
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X=Y",xi/n: Mean of x for selected sample
X= ):ﬁvz 1Xi/N: Mean of x for entire population

552 = f‘l’" (xi —x*)?/(n—m—1): Respondent variance of x
2 = i " (x;—%)%/(n—1): Variance of x for selected sample
2 =¥ (x;—X)?/(N—1): Variance of x for entire population
Sy =YN,(yi—¥)(xi—X)/(N—1): Population Covariance between y and x
7t =Y""2y/(n—m): Respondent mean of Z,

Iy = lel Zy;/n:  Mean of Z, for selected sample
Z,=YN 1le /N: Mean of Z, for entire population

52 =Y "(z, —Z;)*/(n—m—1): Respondent variance of Z,
3

57 = Zl 1(Zx1 %)/ (n— 1) Variance of Z, for selected sample

SZX =y 1(Zx, Z:)?/(N —1): Variance of Z, for entire population
Syz = Z, L0 =) (2, ZX) /(N—1): Population Covariance between y and Z,
See, = YN l(x, )(z Z:)/(N —1): Population covariance between x and Z,.

l 1(‘1 ( ) P : o

= opulation Correlation between y and x
~ VAL - ¢2 x5i—X)? P Y
Pyze = Zl iz (Z" ) :  Population Correlation between y and z,
1 1 ) Y \/Zl 1 Z)‘ )’

N (g _

Przy = Lt = X) @y —Z) Population Correlation between x and z

VI %)\ Y (2 —Z)

To obtain the biases and MSEs of the proposed estimators, we assume the following
transformations in terms of errors:

52 =S8 (1+&),
F=X(1+¢g), i=X(1+¢g),
i=7(1+¢&) and Z,=Z(1+¢&)

such that

E(e)=E(€]) =E(&1) = E(Sz) E( &) =0and E(&) = fo(Ao0 — 1) = frAjy. E(€]%) =
FCLE(e]) = fiCL E(&5?) = /oC2, E(€7) = fiC2., E(&0€]) = f22210Cx. E(€0€1) = f1210Cx,
E(&8) = fA201Cy, E(Sosz) f1/1201sz, E(g/&5) = fol,. E(g/ &) = fiCy,. E(€1&) =
E(8182) = flcxzx.

Here, fi = (1= %), o= (ks — &) o = A= (M,, 1Y, Auim = i,

) ) s ”zoolv‘ozo;‘ooz
Miim = 37 Loy i = V)F (i — X) (2, —Z )m G=3 G= SX’ C.=% ny =X

X
S
PyxCyCr, Cyr, = 355 = Py OCrys Oz, = 755 = P G Czw R = 2 and Ry =

= I\)‘ NI
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3. Classical Estimators Available in the Literature

In this part of the paper, we have discussed some already established estimation pro-
cedures of population variance S% for study variable along with their properties under the
various strategies of random non-response given below.

Strategy I: When population mean X and sample mean £ of auxiliary variable x
are used. In this case, we assume that the information is missing at
random only for y, and the population mean X is known.

Strategy II: =~ When population mean X and respondent mean x* of auxiliary vari-
able x are used. In this case, we assume that the information is miss-
ing at random for y as well as the corresponding units of x, and the

population mean X is known.
Strategy III:  When sample mean ¥ and respondent mean X* of auxiliary variable

x are used. In this case, we assume that the information is missing at
random only for y, while the information for x is available on all the
sampled units, but the population mean X is unknown.

The usual estimator of population variance in the case of random non-response, is given
by
— 2
fo =, )
where 532 = Y7 "(y; — 5*)*/(n — m— 1) is the conditionally unbiased estimator of popula-

2=
tion variance respectively and where 5* = Y~ " y;/(n — m) is the respondent mean of y (see

Singh and Joarder, 1998).
The variance of the estimator #; to the first order approximation is given by

V(to) = Sy f2igo 3)

The classical ratio estimators on the lines of Upadhyay and Singh (2001) under the
Strategies I, II and III, are respectively defined as

tmy = 83 (f) (4)
X
by = 532 <x> )

=5 () ©)
- X

The MSEs of the estimators #,, (i = 1,2,3) to the first order approximation are given by
MSE (t;) = Sy frAioo + fiCx(Cx — 22210)] ™)

Following Das (1978) and Upadhyay and Singh (2001), we define two sets of difference
and ratio estimators under three strategies of random non-response, respectively given by
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difference-type estimators:

tmgy = 53> +kj (X —X) (8)
tmgy = S32 + K5 (X — 5°) 9)
tmgy = S50+ K3 (X — X°) (10)
Ratio type estimators:
(XY
tm,y = Sy (X) (11
2 (X\®
iy = 532 (ﬁ) (12)
_\ 7
* X 3
iy = 837 (x> (13)

where k} and 7" (i=1,2,3) are the unknown constants which are to be chosen such that the
variances of the respective estimators is minimum.

The minimum MSEs of the existing estimators #,,4,(i = 1,2, 3) and t,,),, are respectively
given by
min.MSE (tyg,) = min.MSE (tmr,) = Sy [ f2ioo — fil3no)] - (14)
The optimum values of k] and 7} (i=1,2,3) are given by

2> A210 and e e Mo

nl((}pt) - TCZ(()]JZ) - n.3(()pt) - S,

kT(()pt) = k;(()pt) = k;(()pt) = Sy Sy

In line with Singh et al. (1988), the optimal version of the estimators f,,,4,(i = 1,2,3) in

three strategies are given by

tmp, = Ki s3> +dj (X —X) (15)
tmp, = K3537 +d3 (X — %) (16)
tmp, = K3 537 +dj (¥ — X°) (17)

where & and d7 (i = 1,2,3) are the arbitrary constants to be chosen such that the MSEs of
the respective estimators become minimum.

The optimum values of k;* and d; (i=1,2,3) are given by

* 1 2 A‘Zl() *
= aIld di(opt) = SV 78 Ki(Opt)
X

K
i(opt) [1 + Ao — fiﬂazlo}

The minimum MSE:s of the estimators t,,p, (i = 1,2,3) are given by

S*MSE (tyna,)
in.MSE (tnp,) = —>— " —~ N
min (tmp;) Sﬁ +MSE (ta;) "
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Thus the estimators #,p,(i = 1,2,3) are improvement over t,,4. as well as f,,, in the
corresponding strategies.

4. Proposed Estimators

Here, we have suggested various novel difference-type estimators of finite population
variance along with their optimal variants in case of random non-response by employing
the rank of an auxiliary variable. The estimators are formulated in three different cases of
random non-response, which are discussed in the following three strategies.

Strategy I: When the population means (X,Z,) and corresponding estimates (¥, 7y)
from the sample are used. o

Strategy II: ©~ When the population means (X,Z,) and corresponding estimates
(x*,z5) from the respondents are used.

Strategy III: ~ When the sample means (¥,Z,) and corresponding estimates (X*,Z})
from the respondents are used.

The proposed estimators under the Strategy I, Strategy Il and Strategy III are given as

tmddl :S;2+¢Y(X_X)+(PT(ZX_ZX> (19)
gy = 532+ 05 (X =) + 5 (Z — Z) (20)
tggs = 83+ 03 (F— ) + 03 (2 — Z}) Q1)

where ¢ and ¢; (i=1,2,3) are the unknown constants to be chosen suitably. The optimum
values of these constants are given later in Appendix.

The optimal versions of the proposed estimators #y,,, , tm,,, and fy,,, are respectively
given by

tmgpy = 0837+ B (X — %) + ¥ (Ze — 2) (22)
gy = 05537+ B3 (X =)+ % (Z:— Z}) (23)
gy = 05557 + B3 (R— ) + 95 (2 — 2) (24)

where o (i = 1,2,3), B and ¥/ are the arbitrary chosen constants. The optimum values of
these constants are given later in Appendix.

The difference-type estimators discussed in (3.7)-(3.9) and (3.14)-(3.16), are the special
cases of the proposed difference-type estimators (4.1)-(4.3) and (4.4)-(4.6) respectively in
the corresponding strategies.

Theorem 1: The biases of the estimators t,,,, (i = 1,2,3) and t,,,,, to the first degree of
approximations are given by
B(tm,,;) =0 (25)

and
B(tmdDi) = 55(0‘1'* - 1) (26)

Proof: See Appendix
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Theorem 2: The minimum MSEs of the estimators #,,,, (i = 1,2,3) and t,,,,, to the first
degree of approximations are given by

min.MSE () = S;‘(fZMOO _ ﬁR;%czx) @
and )
Simin.MSE (t,,,,,.)
o S;‘ + min.MSE (t,,,)
where R*2_ = /1201+/12,072pwlmlzm

Yz 1-pZ,

Proof: See Appendix.

5. Optimal Situations of Proposed Estimators

The optimal situations of the proposed estimators #,,,..(i = 1,2,3) and t,, 4 at which

their variances are minimum are given as

ddi

s = 55+ Oopny X =) + 0/ () (Ze = Z2) (29)
t;';ddz = s*2 + ¢2* (opt) (}_( _X*) + (p;(opt) (Zx - Z;) (30)
t;:lddS *2 + ¢3 (opt) (x _X*) + (p;(opt) (zx - Zj;) (31)
t:”chl = ar(opt 57+ ﬁl (opt) (X ¥) + Vk 1(opt) ( —Zx) (32)
t;:ldD2 = a2<()]7t +ﬁ2 (opt) (X x ) + }/2 ()pt)( Zx) (33)
and
s = O (opt)Ss- + Biopn) (=) + Viopn) (2 — 20) (34)
where
* * 1210 - A'ZOIpxz )
¢ opt) — ¢ 0 ¢ (o = (35)
1(opt) 2(opt) 3(opt) 1_szx S’
* * * 2'201 - AZIOsz Sf
opt) = Polop) = P3opn = — 7 3 < (36)
Pitopr) = Patopt) = P3(opn) 1-pZ 5.
1
o) = p > ((=1,23 37)
(ort) — 14+ (fakioo— ﬁRy.%czx) ( )
Bilopr) = %iopt) Oiopryy  (i=1,2,3) (38)

7/;(01)!) - ai?opt) q’i?optﬁ (i=1,2,3) (39)
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6. Comparative Study

We have judged the merits of the estimators based on real and simulated data under an
empirical study and a simulation study given as follows.

6.1. Empirical Study

To exhibit the performances of the estimators, we have chosen 8 populations given as
follows.

Population-1: [Cochran (1977); p-182]:

Y: Number of placebo children.

X: Number of paralytic polio cases in the placebo group.

The description of the required parameters is as follows:

N =34,Y =2.588234, X = 4.923528, C, = 1.233279, C, = 1.023332, C, = 0.5687384,
Pyx = 0.7328234, py, = 0.6571886, py,, = 0.8165118. Here, n =12 and m = 8.

Population-2: [Anderson (1958); p-110]:

Y: Sepal Width of Iris flower. X: Sepal Length of Iris flower.

The description for this data is as follows:

N =150,Y =3.057334, X = 5.843334, C, = 0.1425641, C, = 0.1417114, C, = 0.5749112,
Py = —0.1175699, p,,. = —0.1404247, p,, = 0.9871834. Here, n = 50 and m = 12.

Population-3: [Madala (1992); p-108]:

Y: salary (thousands of dollars)

X: years of experience (defined as years since receiving Ph D).

The description of the data is as follows:

N =32, Y =47.37813, X = 18.376, C, = 0.1819514, C, = 0.4548527, C, = 0.5677533,
Pyx = 0.4245115, py;. = 0.3367752, py;, = 0.9447146. Here, n = 12 and m = 8.

Population-4: [Anderson (1958); p-110]:

Y: Sepal Length. X: Petal Length.

The details of the required parameters are as follows:

N =150, Y =5.843334, X = 3.7581, C, = 0.1417112, Cy = 0.4697442, C, = 0.5748254,
Pyx = 0.8717537, p,,, = 0.8792952, p,,. = 0.9684332. Here, n = 50 and m = 10.

Population-5: [Satici and Kadilar (2011)]:

Y: number of successful students. X: number of teachers.

The summary of the data is:

N =261, ¥ =222.5825, X = 306.44831, C, = 1.86541, C, = 1.7596, C, = 0.576241,
Pyx = 0.9706, py;, = 0.6372, p; = 0.6264. Here, n = 90 and m = 70.
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Population-6: [Singh (2003); p-1111]:

Y: amount (in $000) of non-real estate farm loans in different states during 1997.

X: amount (in $000) of real estate farm loans in different states during 1997.

The summary of the data is:

N =50, Y =878.1627, X = 555.4346, C, = 1.235166, C, = 1.052917, C, = 0.571663,
Pyx = 0.8039, p,,. = 0.7462, p,,, = 0.9237. Here, n = 20 and m = 8.

Population-7: [Anderson (1958); p-110]:

Y: Petal Length of Iris setosa. X: Sepal Length of Iris setosa.

The description of the data is given as:

N =50, Y = 1.463, X = 5.0061, C, = 0.1187853, C, = 0.07041345, C, = 0.5683722,
pyx = 0.2671757, py,, = 0.2687847, py,. = 0.9797012. Here, n =20 and m = 5.

Population-8: [Mc Nill (1977)]:
Y: speed of cars. X: distances taken to stop.
The details of parameters for this data are as follows:
N=50,Y =154, X =42.981, C, = 0.3433534, C, = 0.5995668, C, = 0.571306, p,x =
0.8068948, py,, = 0.8341367, p,,, = 0.9605414. Here, n = 20 and m = 5.
We have estimated the percentage relative efficiencies (PREs) of the different estimators
with respect to usual unbiased estimator s*2. To compute the PREs of different estimators
(to) we use the formula, given by

V(s:?)

PRE(t,) = ST}(I) x 100.

The results are shown in Table 1.

6.2. Simulation Study

We have conducted a simulation study based on artificially generated data using the R
programming language. To generate the data, we have considered two statistical probability
distributions: (i) Gamma distribution and (ii) Normal distribution, where the performances
of the estimators are appraised for different amounts of correlation, 0.6-0.9, with a step of
0.1 between the study variable and auxiliary variable. The distributions are discussed below.

Gamma distribution

Following Singh and Horn (1998), we use the transformations to generate the study and
auxiliary variables, which are given as follows:

yi=HMy+4/(1— p)%c)yi +pyxsf}xi (40)
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Table 1. PREs of the various estimators with respect to s*2.

Populations

Estimators I 2 3 ) 5 6 7 8
Strategy 1

to 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

tmy 125.37 97.34 89.07 94.72 159.79 123.98 99.26 88.34

by =tr) 125.54 101.80 101.07 100.73 204.03 124.03 100.88 100.16

tmp, 157.89 106.08 116.76 103.34 222.89 142.70 113.92 106.73

Tmdd, 128.33 103.10 109.51 105.07 230.60 129.88 101.06 113.04

tman, 160.68 107.38 125.19 107.67 249.45 148.55 114.11 119.61
Strategy 11

Iy 160.83 96.10 81.09 92.84 217.26 151.88 98.83 82.63

Lndy =tmry 161.36 102.70 102.06 101.02 377.99 152.01 101.41 100.25

tmp, 193.71 106.98 117.75 103.62 396.85 170.69 114.45 106.82

tnddy 170.25 104.67 119.75 107.15 546.07 168.44 101.71 122.52

tmap, 202.60 108.95 135.44 109.76 564.93 187.12 114.75 129.09
Strategy 111

Ty 121.34 98.69 90.05 97.90 119.84 117.40 99.56 92.74

tidsy =tmry 121.48 100.87 100.97 100.28 129.13 117.43 100.52 100.09

tmpy 153.83 105.15 116.65 102.88 147.98 136.11 113.56 106.66

bmddsy, 123.74 101.48 108.47 101.89 133.43 121.40 100.63 107.35

tmdDsy 156.09 105.76 124.16 104.63 152.28 140.07 113.67 113.92

and
*
Xp = Py +X; (4D

where y; ~ G(ay,by) and x; ~ G(ay,b,) are the independent gamma variables generated us-
ing R programming language. Here, (ay, by) and (ay, by) are the shape and scale parameters
for y; and xj. Moreover, Uy = ayby, Uy = a;by, S§ = aybg and S)% = axb)%. The size of data is
N = 5000 and sample size n = 1500. We have taken m = 300.

Normal distribution

We have considered the bivariate normal distribution as (¥,X) ~ N(9,9, pyx,202,202)
for the correlations (p,.). We have chosen N = 5000, n = 1500 and m = 300.
The complete simulation process is as follows. Draw a sample of size n focusing on a
variable of interest which is properly correlated with an auxiliary characteristic from a pop-
ulation of size N. Set the value of m and drop m units randomly from the sample. Now,
compute the relevant statistics based on the information available on (n — m) units. Repeat
the whole procedure 50,000 times.

We have computed the simulated percentage relative efficiencies (PREs) of different es-
timators considered in this study with respect to usual estimator s;z based on their simulated
MSE values by using the formulae given as

1

V(32 simutared = 50.000

0000 -
Y (52— 82
j=1

MSE ()t = < ¥ (1)~ 2 PRE()s _ VP mdated 0o
o )simulated 50’000 s o)j y/) > o )simulated MSE(Z‘.)Simulawd .

The results are shown in Table 2.
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Table 2. PREs of the different estimators with respect to s;z.

Gamma distribution Normal distribution
Value of py, Value of py,
Estimators 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
Strategy 1
to 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
tmy 100.02 100.02 100.02 100.03 80.66 88.57 100.73 101.73
tmd, 107.55 108.20 110.76 110.90 105.02 108.57 110.18 111.28
try 107.56 108.23 110.77 110.89 105.03 108.59 110.19 111.29
tu, 107.72 108.38 110.94 111.06 105.16 108.72 110.35 111.45
tmdd, 140.53 150.67 17091 181.14 124.38 144.89 167.84 183.15
twdp, 140.55 150.80 171.09 181.31 124.52 145.04 168.01 183.32
Strategy 11
tiy 100.03 100.03 100.03 100.03 83.79 97.62 101.68 102.32
tmd, 110.50 111.41 115.22 115.38 106.94 112.00 114.34 115.96
try 110.55 111.52 115.20 115.38 106.95 112.03 114.36 115.97
tmb, 110.71 111.66 115.37 115.55 107.08 112.15 114.51 116.12
tiddy 164.09 183.90 228.93 255.13 136.26 172.59 221.56 260.62
tmdD, 165.25 184.11 229.11 255.30 136.40 172.74 221.73 260.78
Strategy 111
tny 100.01 100.01 100.01 100.01 77.82 86.72 100.24 101.60
tnds 102.55 102.80 103.60 103.64 101.72 102.90 103.42 103.76
by 102.58 102.80 103.60 103.64 101.74 102.92 103.43 103.77
tmbsy 102.74 102.94 103.78 103.81 101.88 103.05 103.59 103.93
tuddsy 111.46 113.66 117.41 119.06 107.53 112.45 116.89 119.37
tndD 111.62 113.80 117.59 119.23 107.68 112.61 117.06 119.54
2 tm3  —e— tmd3 tmD3 —e— tmdd3 —=— tmdD3
o]
2
2 |
S
£ 2 4
i
.6 [ ]
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Figure 3. Comparison of PREs of different estimators for Populations 1-8 under Strategy-111
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Figure 4. Comparison of PREs of different estimators in all the strategies based on Gamma
distribution when py; = 0.9
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Figure 5. Comparison of PREs of different estimators in all the strategies based on Normal
distribution when py, = 0.9
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Interpretation of the results:
From Table 1, we report that:

®

(i)

(iii)

@iv)

)

(vi)

(vii)

All the estimators, excluding the usual ratio estimators tm,.(i = 1,2,3), perform well
in all the Populations 1-8 under each strategy. We see that the performances of usual
ratio estimators #,,; are good in Populations 1, 5, & 6, where the condition 12*10 > %
holds. On the other hand, the performances of #,,, are poor in Populations 2, 3,4, 7 &
8 because the condition A5}, > % does not hold in these populations.

The proposed estimators f,,,44,(i = 1,2,3) (constructed using the rank of an auxiliary
variable) are paralleling more efficient than the existing estimators 4, Or t,,,;, Tespec-
tively, which are formulated using the original information on an auxiliary variable.
Thus, it is remarkable that the efficiency of usual difference-type estimators may be
increased just by introducing the dual use of an auxiliary variable.

Similarly, the improved versions f,,4p,(i = 1,2,3) of the proposed estimators f,,qq,
also show their appreciable behaviors over the existing estimators f,,p, respectively in
terms of gain in percentage relative efficiencies. Thus, the efficiency of the optimal
version of the usual difference estimator may also be increased using the rank of an
auxiliary variable.

The proposed optimal estimators t,,4p, (i = 1,2,3) are the most efficient estimators
among all the estimators discussed in Table 1 in the corresponding strategies.

We see that the performances of all the estimators under Strategy II are superior to
those of Strategy I and Strategy III. Thus, Strategy II is reasonably preferable over
Strategy I and Strategy III when the information at different levels is available on an
auxiliary variable.

In view of the arguments (iv) and (v), we can easily say that the efficiency of the
proposed estimator t,,,4p, is highest among all the estimators considered in this study,
which is evidently demonstrated in Table 1.

The merits of the proposed estimators based on the comparative results in Table 1 can
be clearly visualized in Figures 1, 2, and 3 for Strategies I, II, and III, respectively.

Similar conclusions (as discussed above) for the proposed estimators can be drawn from
the results in Table 2, which is based on the simulation study. An instant view of the results
in Table 2 for gamma and normal distributions at the correlation value 0.9 can be obtained
from the two scatter plots, which are displayed in Figures 4 and 5. Similar plots can be
obtained for the rest of the correlation values for both distributions.

In Table 3 (given in Appendix), we have demonstrated the values of estimates of all the
estimators at their optimum situations considered in this study. These estimated values are
based on the sample drawn from Population 6. It is observed that the estimates obtained
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from proposed estimators f,,,44,(i = 1,2,3) and t,,4p, based on the selected sample are very
close to the true value of the parameter.

On the basis of the above arguments, we can easily say that the use of the rank of an auxiliary
variable is capable enough to enhance the efficiency of the estimators to the next level, as
the proposed estimators present considerable improvements over other existing estimators
in estimating the population variance in the presence of random non-response under both
empirical and simulation studies. Therefore, this comparative study may be appreciably
extrapolated in general practice.

7. Conclusions

From the aforementioned results and discussions, it may be concluded that the effi-
ciency of usual difference-type estimators may be easily increased without using any new
(more than one) auxiliary variable, just by introducing the dual of an auxiliary variable. The
proposed estimators, which are constructed using the rank (dual) of an auxiliary variable,
are capable of providing increased efficiency in three different strategies of random non-
response. The proposed difference-type estimators show better gain in terms of percentage
relative efficiencies over the existing relevant estimators considered in this study for the cor-
responding situations of random non-response. The performances of the optimal versions
of the proposed difference-type estimators are superior to all other estimators discussed in
this study in respective situations at various amounts of correlations.

Hence, looking at their charming behaviors, they may be encouragingly recommended
for real-life situations when faced with missing-at-random problems. The strengths of the
proposed model are as follows: it may provide efficient results for both positive and negative
correlations, it may be fruitfully appreciable for highly positively correlated datasets, and
it may be highly preferable when the information is available only on a single auxiliary
variable. On the other hand, the weakness may lie in the fact that the proposed model may
not give an attractive result for the low-correlated datasets, and it may not be preferable
when the information on multi-auxiliary variables is available. For future research, the
present work may be extended to various sampling schemes such as successive sampling,
two-phase sampling, stratified sampling, etc, for the estimation of mean, variance, and other
population parameters.
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Appendix

Outline of the derivations of Theorem 1 and Theorem 2.

The proposed estimators #,,44, (i = 1,2,3) and #,,,4p, under the error transformations can be
written as

tmad, = Sy(1+ &) — 91 Xe1 — 9] Zea (42)
tmdd, = Sy (1+ &) — s Xef — 37,5 (43)
tmda; = Sy (1+€0) + ;X (€1 — &) + @3 Zc(62— &) (44)
tmap, = 04 Sy(1+ &) — BiXe1 — Vi Zees 45)
tnap, = 055 (1 + &) — By Xef — 1523 (46)
tmapy = 05 S2(1+ &) + B X (61 — &) + Vi Ze(e2 — &) @7)

The above equations can be rewritten as

tmaa, — Sy = Sye0— 07 Xey — @] Ze, (48)
tmaa, — Sy = Syeo — 03X i — 37,85 (49)
tmag, — Sy = Sy€0+ ;X (& —€1) + 93 Z:(&; — &) (50)
tmap, — Sy = Sy{af (1+&) — 1} — By Xe) — 1 Zeea (51)
tmap, =Sy = S;{05 (1 + &) — 1} — B3 Xef — 3 Z:&3 (52)
tmaps — Sy = S;{o (1+ &) — 1} + B3 X (e — 1) + Vi Ze(&5 — &) (53)

Taking the expectation of both sides of equations (8.7)-(8.12), we can easily get the biases
of the proposed estimators. Hence the proof of Theorem 1.

Now, squaring both sides of the above equations and ignoring the terms of errors having
power greater than two, we get

(tmaa, — S3)* =Sy [&5 + 01 Riei + @1 R3€7 + 207 @R\ Ry €182 — 297 R1 €08
—207R28)8&)] (54)

(tmaa, —S3)° =Sy [& + 0" Rie{* + 03°R3€5° + 205 03 R\ Rogf €5 — 205 Ry €oef
—20; R&)€5] (55)

(tmaay —S5)* =Sy [& + 95 Ri(e1” — &) + 03°R3 (&% — &) + 295 ps RiRo (e[ &5 — €1 2)

=203 R (€0&] — €0€1) — 203 R2 (€085 €0€2)] (56)
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(tmap, — S3)* =Sy [ (1 + €5 +2€0) + B{Ri €l + vi*R3e5 — 20 By Ry (€1 + €0€1)
—20; YRy (€2 + €0€2) + 2B Vi R1R2€182 — 204 (1 + &)
+2B{R1€1 +2Y{Rogr + 1] 57

(tmap, — 53)* =83 [0 (1 + €5 +2e0) + By Riel” + 13 R3es” — 205 By Ru (€] + eoey)
—205%°Ro(&5 + &085) + 2B iR 1 Rogf €3 — 205 (1 + &)
+2B,R1€ + 275 Rr65 +11] (58)

(tmaps — S7)% =Sy [057 (1 + &5 +2€0) + B3 *Ri (&1 — €] )* + 13°Ra (€2 — &)
—20 B3R (1+ &) (&1 —€}) — 205 V2R3 (1 + &) (&2 — €5)
+2B55R 1R (61 — €] ) (&2 — &) — 205 (1 + &)
+2B5R1(e1 — &) + 2% Ra(e2 — &) + 1] (59)

Taking expectations of both sides of equations (8.13)-(8.18), we can easily get the MSEs of
the proposed estimators to the first order of approximations, are given as

MSE (tnaa) =S [ ohioo + 0 RLACE + @ RAf,CE + 207 0 RiRa f,Ce,
—2¢; Ry fiA210Cx — 20} Ry fiA201C., ] (60)

MSE (tmap;) ZS;t [O‘i*z(l + fokipo) + BIPRIfCE + szR%fiszx —20; B R1 fiA210Cx
20 Y Rafi2201Cy, + 2B Vi RiR2 fiCrr, — 2005 + 1] 61)

Now, differentiating partially the equations (8.19) and (8.20) with respect to the constants
07 (i=1,2,3), @7, o, B} and ¥’ and equating the resultant equations to zero then solving
them we can easily obtain their optimum values as given in equations (5.7)-(5.11).

Finally, by putting these optimum values in equations (8.19) and (8.20) appropriately, we
can easily obtain the minimum MSEs of the proposed estimators as given in equations (4.9)
and (4.10). Hence the proof of Theorem 2.
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Table 3. Estimates of the various estimators based on a sample drawn from Population 6
where the true value of the parameter is 1176526

Sample Respondents
y X y X Estimators Estimates
348.334 408.978 38.067 40.775 to 1230451
494.730 639.571 3520.361 1248.761 by 1027631
1692.817 413.777 57.684 139.628 Gy 1131690
43.229 42.808 440.518 323.028 Uy 1355048
298.351 756.169 571.487 114.899 by 1230035
440.518 323.028 43.229 42.808 tury 1230258
197.244 56.908 635.774 870.720 Uy 1230674
38.067 40.775 2610.572 2131.048 U 088258.4
571.487 114.899 494.730 639.571 by 1123362
557.656 1045.106 348.334 408.978 Uy 1365554
848.317 907.700 1372.439 1229.752 tmp, 858921.0
540.696 939.460 197.244 56.908 13 tub, 1000448
3520.361 1248.761 tuby 1178178
386.490 100.964 bndd, 1161129
1372.439 1229.752 tndd, 1186860
3585.406 1337.852 tnddy 1256182
57.684 139.628 tnap, 1015148
635.774 870.720 Unap, 1068391
388.869 553.266 tap, 1088691

2610.572 2131.048




